MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries.
نویسندگان
چکیده
Although MnO has been demonstrated to be a promising anode material for lithium-ion batteries (LIBs) in terms of its high theoretical capacity (755 mA h g(-1)), comparatively low voltage hysteresis (<0.8 V), low cost, and environmental benignity, the application of MnO as a practical electrode material is still hindered by many obstacles, including poor cycling stability and huge volume expansion during the charge/discharge process. Herein, we report a facile and scalable metal-organic framework-derived route for the in situ fabrication of ultrafine MnO nanocrystals encapsulated in a porous carbon matrix, where nanopores increase active sites to store redox ions and enhance ionic diffusivity to encapsulated MnO nanocrystals. As an anode material for lithium-ion batteries (LIBs), these MnO@C composites exhibited a high reversible specific capacity of 1221 mA h g(-1) after 100 cycles at a current density of 100 mA g(-1). The excellent electrochemical performance can be attributed to their unique structure with MnO nanocrystals dispersed uniformly inside a porous carbon matrix, which can largely enhance the electrical conductivity and effectively avoid the aggregation of MnO nanocrystals, and relieve the strain caused by the volumetric change during the charge/discharge process. This facile and economical strategy will extend the scope of metal-organic framework-derived synthesis for other materials in energy storage applications.
منابع مشابه
Encapsulation of MnO Nanocrystals in Electrospun Carbon Nanofibers as High-Performance Anode Materials for Lithium-Ion Batteries
A novel and controllable approach is developed for the synthesis of MnO nanocrystals embedded in carbon nanofibers (MnO/CNFs) through an electrospinning process. The as-formed MnO/CNFs have a porous structure with diameters of 100-200 nm and lengths up to several millimeters. When used as an anode material for lithium-ion batteries, the resulting MnO/CNFs exhibit superior electrochemical perfor...
متن کاملMembranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries
Freestanding yet flexible membranes of MnO/carbon nanofibers are successfully fabricated through incorporating MnO2 nanowires into polymer solution by a facile electrospinning technique. During the stabilization and carbonization processes of the as-spun membranes, MnO2 nanowires are transformed to MnO nanoparticles coincided with a conversion of the polymer from an amorphous state to a graphit...
متن کاملDesigned construction and validation of carbon-free porous MnO spheres with hybrid architecture as anodes for lithium-ion batteries.
Porous micro/nanostructures of earth abundant and ecobenign metals are emerging as advanced green materials for use in electrochemical energy storage devices. We present here the custom designed construction of a hybrid architecture containing porous MnO microspheres, formed out of hierarchically assembled nanoparticles using a template-free co-precipitation method, wherein the sacrificial temp...
متن کاملAn Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes
Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...
متن کاملCarbon scaffold structured silicon anodes for lithium-ion batteries
A unique methodology of fabricating Si anodes for lithium-ion batteries with porous carbon scaffold structure is reported. Such carbon scaffold Si anodes are fabricated via carbonization of porous Si-PVdF precursors which are directly deposited on the current collector. Unlike the conventional slurry casting method, binder and conductive additives are not used in the preparation of the carbon s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 21 شماره
صفحات -
تاریخ انتشار 2015